by Iaato » Tue 01 Apr 2008, 16:48:07
$this->bbcode_second_pass_quote('BigTex', 'A')nd it's a VERY frustrating problem, because it neutralizes much of what we are good at (i.e., building and innovating our way out of problems).
We just spent 150 years selecting for competitive growth in our civilization. Examine any technology and the development over time reflects this style of reacting to energy inputs. As a civilization we are optimized for rapid, exclusive overgrowth to use the vast amounts of excess energy inputs in our society. The maximum power principle explains why technology is so sexy, yet so deadly during an era of declining resources:
$this->bbcode_second_pass_quote('', '4').Societies compete for economic survival by Lotka's principle (see Ref. 3), which says that systems win and dominate that maximize their useful total power from all sources and flexibly distribute this power toward needs affecting survival.
The programs of forests, seas, cities, and-countries survive that maximize their system's power for useful purposes. The first requirement is that opportunities to gain inflowing power be maximized, and the second requirement is that energy utilization be effective and not wasteful as compared to competitors or alternatives. For further discussion see Lotka (Ref. 3) and Odum (Ref. 1).
5. During times when there are opportunities to expand one's power inflows, the survival premium by Lotka's principle is on rapid growth even though there may be waste.
We observe dog-eat-dog growth competition every time a new vegetation colonizes a bare field where the immediate survival premium is first placed on rapid expansion to cover the available energy receiving surfaces. The early growth ecosystems put out weeds of poor structure and quality, which are wasteful in their energy-capturing efficiencies, but effective in getting growth even though the structures are not long lasting. Most recently, modern communities of man have experienced two hundred years of colonizing growth, expanding to new energy sources such as fossil fuels, new agricultural lands, and other special energy sources. Western culture, and more recently, Eastern and Third World cultures, are locked into a mode of belief in growth as necessary to survival. "Grow or perish" is what Lotka's principle requires, but only during periods when there are energy sources that are not yet tapped. Figure 3 shows the structure that must be built in order to be competitive in processing energy.
6. During times when energy flows have been tapped and there are no new sources, Lotka's principle requires that those systems win that do not attempt fruitless growth but instead use all available energies in long-staying, high-diversity, steady-state works.
Whenever an ecosystem reaches its steady state after periods of succession, the rapid-net-growth specialists are replaced by a new team of higher-diversity, higher-quality, longer-living, better-controlled, and stable components. Collectively, through division of labor and specialization, the climax team gets more energy out of the steady flow of available source energy than those specialized in fast growth could.
Our system of man and nature will soon be shifting from rapid growth as the criterion of economic survival to steady-state non-growth as the criterion of maximizing one's work for economic survival (Figure 1). The timing depends only on the reality of one or two possibly high-yielding nuclear energy processes (fusion and breeder reactions) which may or may not be very yielding,
Ecologists are familiar with both growth states and steady state, and observe both in natural systems in their work routinely, but economists were all trained in their subject during rapid growth and most don't even know there is such a thing as steady state. Most economic advisors have never seen a steady state even though most of man's million year history was close to steady state. Only the last two centuries have seen a burst of temporary growth because of temporary use of special energy supplies that accumulated over long periods of geologic time.