by Mastodon » Thu 10 Apr 2008, 07:29:59
$this->bbcode_second_pass_quote('MrBill', '
')Every non-trained undergrad tries to explain the world (or not) using a simple supply and demand graph. Sorry, but that was in the first semester of your first year of Economics 101. Am I to ignore physics and all physicists because they have been unable to join particle physics and quantum physics in one simple to understand grand unififying theory? Duh!
It is quite usual to isolate variables in an experiment, so that you can state with confidence when A happens then this will happen to B. Or to state it another way, you have a H1 hypothesis and a H0 hypothesis. A supply and demand curve does exactly that. It does not state that supply (or growth) in unlimited. We are talking about 'available supply' against 'potential demand' where 'price' is the equilibrium.
No where in any credible economic journal will you find that higher prices lead to unlimited supply. Your lack of understanding of economics (and finance) is not my problem. It is yours!
Bill,
So from the above are we to assume you are a trained economist (PHD perhaps) and are prepared to teach us what you know (forgive us I know we are not worthy) coz I just love your use of physics to clarify your point.
Below just a few more quotes taken completely out of context to show how little I know about economics (these are shamelessly plagarised from an old sparring partner Jay Hanson). All we need is MORE humans... its so darn simple (soylent that green anyone???)
Nobel Laureate Paul Samuelson and William Nordhaus:
Should we be taking steps to limit the use of these most precious stocks of society's capital so that they will still be available for our grandchildren?
Economists answer this question in two ways. First, they point out that fossil fuels like oil and gas are finite but not "essential." An essential resource is one, like oxygen, for which there are no substitutes. Substitutes exist for all the energy resources. We can substitute coal for oil and gas in most uses; we can liquefy or gasify coal where liquid or gas fuels are needed; when coal runs out, we can use higher-cost solar energy, nuclear fission, and perhaps someday even nuclear fusion. These last three are superabundant in the sense that when we run out of solar energy, the earth will already be uninhabitable.
A second point concerns the relative productivity of different assets. Many environmentalists argue that energy and other natural resources like wilderness areas and old-growth forests are very special kinds of capital that need to be preserved so that we can maintain "sustainable" economic growth. Economists tend to disagree. They look at natural resources as yet another capital asset that society possesses -- along with fast computers, human capital in an educated work force, and technological knowledge in its patents, scientists, and engineers. Both economists and environmentalists agree that this generation should leave an adequate stock of capital assets for future generations; but economists worry less about the exact form of capital than about its productivity. Economists ask, Would future generations benefit more from larger stocks of natural capital such as oil, gas, and coal or from more produced capital such as additional scientists, better laboratories, and libraries linked together by information superhighways?
The substitutability of natural capital and other kinds of capital is shown by the production indifference curve or "isoquant" in Figure 18-2. We show there the amounts of the two kinds of capital that would be required to attain a certain level of output in the future (Q*), holding other inputs constant. That output can be produced at point C with a conservationist policy that emphasizes reducing energy use today, leaving much oil and gas and relatively little human capital for the future. Or it might be produced with a low-energy-price and high-education strategy at B. Either of these is feasible, and the more desirable one would be the one that has a higher consumption both now and in the future.
Note as well that the isoquant hits the vertical axis at point A, indicating that we can produce future output level Q* with no oil and gas. How is this possible? With the greater scientific and technical knowledge represented by point A, society can develop and introduce substitute technologies like clean coal or solar energy to replace the exhausted oil and gas. The curve hits the axis to indicate that in the long run, oil and gas are not essential. [ p. 328, ECONOMICS, Paul Samuelson and William Nordhaus; McGraw-Hill, 1998 ]
--------------------------------------------------------------------------------
William Nordhaus:
It is appropriate to conclude that, as long as the sun shines brightly on our fair planet, the appropriate estimate for the drag [on the economy] from increasing entropy is zero. [ p. 34, LETHAL MODEL 2: The Limits to Growth Revisited, in ECONOMIC ACTIVITY #2; Brookings, 1992 ]
Robert N. Stavins:
If we check today to see how the Limits I predictions have turned out, we learn that (according to their estimates) gold, silver, mercury, zinc, and lead should be thoroughly exhausted, with natural gas running out within the next eight years. Of course, this has not happened. Reserves have increased, demand has changed, substitution has occurred, and recycling has been stimulated. [ p. 45, ibid.]
--------------------------------------------------------------------------------
Edward R. Fried and Philip H. Trezise:
The revival of raw Malthusianism exemplified in the Club of Rome's Limits to Growth was one myth. [ p. 4, OIL SECURITY: Retrospect and Prospect, Edward R. Fried and Philip H. Trezise; Brookings, 1993 ]
--------------------------------------------------------------------------------
Wilfred Beckerman:
Second, one of the useful by-products of the oil crisis has been a renewed interest in finding more oil or alternative sources of energy in the medium run -- i.e., before nuclear energy becomes important. For example, much more attention has been paid recently to shale and tar sands, and there is a general convergence of views among the experts to the effect that the extraction costs of shale oil would be about $7 per barrel, compared with the "posted price" of oil at the beginning of 1974 of about $11 per barrel. And it is estimated that in the western U.S.A. shale oil reserves amount to about 90 billion tons (or about as much as known world oil reserves and about twice as much as the oil reserves of the Middle East)--and possibly several times as large as this. Similar reserves of oil from tar sands exist in Alberta in Canada, and the cost at which oil could be extracted from this source is estimated at being about $5 to $6 her barrel. [ p. 208, TWO CHEERS FOR THE AFFLUENT SOCIETY: A Spirited Defense of Economic Growth, by Wilfred Beckerman; St. Martin's Pr., 1974 ]
--------------------------------------------------------------------------------
Wilfred Beckerman:
A major conclusion of this [Limits to Growth] study is that, at current rates of consumption, the world would shortly run out of supplies of many key minerals. [ p. 58, THROUGH GREEN-COLORED GLASSES: Environmentalism Reconsidered, by Wilfred Beckerman; Cato, 1996 ]
--------------------------------------------------------------------------------
Julian Simon:
Regarding oil, the price rise since the 1970s does not stem from an increase in the cost of world supply. The production cost per barrel in the Persian Gulf still is perhaps 50 cents per barrel. Concerning energy in general, there is no reason to believe that the supply of energy is finite, or that the price of energy will not continue its long-term decrease forever. I realize that it sounds weird to say that the supply of energy is not finite or limited, but I'll be delighted to give you a whole routine on this in the question period if you ask. [ p. 119, SCARCITY OR ABUNDANCE, by Norman Meyers and Julian Simon; Norton, 1994 ]
--------------------------------------------------------------------------------
Herman Kahn:
What about the energy needed for the super-industrial society? Scientists and engineers are generally agreed that a sufficient research and development effort will make available before the year 2000 several new technologies that can provide the world with nearly unlimited and economical quantities of clean energy from renewable or inexhaustible resources. The technologically advanced nations could obtain most of their energy requirements from these sources by the year 2025. Some of these sources would also be feasible for many developing nations. Furthermore, conventional and currently unconventional fossil fuels will last for centuries. Thus, if the appropriate decisions are made, our grandchildren will not be plagued by an energy crisis. In addition, if we relieve the pressure on the traditional fuel supplies by shifting rapidly to the advanced technologies, then more "natural" oil and gas would be available to less developed nations. [ p. 243, WORLD ECONOMIC DEVELOPMENT, by Herman Kahn; Westview, 1979 ]
--------------------------------------------------------------------------------
Julian Simon and Herman Kahn:
Electrical power from nuclear fission plants is available at costs as low or much lower than from coal, depending upon the location, and at lower costs than from oil or gas. Even in the U.S., where the price of coal is unusually low, existing nuclear plants produce power more cheaply than from coal. Nuclear energy is available in unlimited quantity beyond any conceivable meaningful human horizon. And nuclear power gives every evidence of costing fewer lives per unit of energy produced than does coal or oil. The main constraints are various political interests, public misinformation, and cost-raising counter-productive systems of safety regulation. Nuclear waste disposal with remarkably high levels of safeguards presents no scientific difficulties. [ p. 25, THE RESOURCEFUL EARTH: A response to Global 2000, by Julian Simon and Herman Kahn; Blackwell, 1984 ]
--------------------------------------------------------------------------------
Peter Passell and Lenard Ross:
Conventional sources of energy are confined to fossil fuels (coal, oil, natural gas) and fission fuels (uranium). While supplies of these are much larger than is generally known -- Canada's tar sands and Colorado's shale-rock-oil deposits dwarf the great oil reserves of the Persian Gulf -- expected use rates could still exhaust them within one thousand years. However, the infant technology of nuclear fusion already shows signs of freeing us from the constraints of conventional energy sources. It is possible that nuclear-fusion reactors, in essence controlled hydrogen bombs, can provide safe, cheap, virtually limitless power within decades. The fuel for nuclear fusion is hydrogen, an element as available as sea water. No one has yet been able to generate a fusion reaction in the laboratory, let alone in a commercial power plant -- the technical problems of heating hydrogen to millions of degrees within a tiny fraction of a second are staggering. But the goal now appears within reach -- close enough so that at least one American corporation is developing a fusion reactor without government subsidies. [ p. 33, THE RETREAT FROM RICHES: Affluence and its Enemies, by Peter Passell and Lenard Ross (forward by Paul Samuelson); Viking, 1973 ]
"At some point in the not too distant future, mother nature will initiate bankruptcy proceedings against the standing crop of human flesh". Catton Overshoot