A modified law of gravity correctly predicted, in advance of the observations, the velocity dispersion—the average speed of stars within a galaxy relative to each other—in 10 dwarf satellite galaxies of the Milky Way's giant neighbor Andromeda.
The relatively large velocity dispersions observed in these types of dwarf galaxies is usually attributed to dark matter. Yet predictions made using the alternative hypothesis Modified Newtonian Dynamics (MOND) succeeded in anticipating the observations.
Modified Newtonian Dynamics (MOND) is a controversial alternative to general relativity, the prevailing Einstein-inspired understanding of the phenomenon of gravity, that requires dark matter to exist, but this has never been proved.
MOND does not require dark matter. The finding bolsters the case McGaugh and Milgrom made for MOND's effectiveness in predicting properties in dwarf galaxies in a paper published earlier this year. In that paper, they successfully predicted the velocity dispersion in 17 of the galaxies.
Lead author Pavel Kroupa, Professor at the University of Bonn and Charles University in Prague, said: "There have been many premature claims on the death of MOND in very influential journals. So far, none stand up to detailed scrutiny."
Dr. Indranil Banik of the School of Physics and Astronomy at the University of St Andrews, and soon to be of Bonn University, said: "It is remarkable that MOND still makes such successful predictions based on equations written down 35 years ago."
Dr. Hongsheng Zhao, of the School of Physics and Astronomy at the University of St Andrews, said: "Our modeling of the MOND environmental effect was later confirmed by another group."
Pavel Kroupa et al. Does the galaxy NGC1052–DF2 falsify Milgromian dynamics?, Nature (2018)
http://dx.doi.org/10.1038/s41586-018-0429-z