Making high-performance batteries from junkyard scraps$this->bbcode_second_pass_quote('', '[')img]http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/aelccp/0/aelccp.ahead-of-print/acsenergylett.6b00295/20161026/images/medium/nz-2016-00295j_0007.gif[/img]
"Imagine that the tons of metal waste discarded every year could be used to provide energy storage for the renewable energy grid of the future, instead of becoming a burden for waste processing plants and the environment," said Cary Pint, assistant professor of mechanical engineering at Vanderbilt University.
To make such a future possible, Pint headed a research team that used scraps of steel and brass - two of the most commonly discarded materials - to create the world's first steel-brass battery that can store energy at levels comparable to lead-acid batteries while charging and discharging at rates comparable to ultra-fast charging supercapacitors.The secret to unlocking this performance is anodization, a common chemical treatment used to give aluminum a durable and decorative finish.
When scraps of steel and brass are anodized using a common household chemical and residential electrical current, the researchers found that the metal surfaces are restructured into nanometer-sized networks of metal oxide that can store and release energy when reacting with a water-based liquid electrolyte.The team determined that these nanometer domains explain the fast charging behavior that they observed, as well as the battery's exceptional stability. They tested it for 5,000 consecutive charging cycles - the equivalent of over 13 years of daily charging and discharging - and found that it retained more than 90 percent of its capacity.
Unlike the recent bout of exploding lithium-ion cell phone batteries, the steel-brass batteries use non-flammable water electrolytes that contain potassium hydroxide, an inexpensive salt used in laundry detergent.
The Vanderbilt team drew inspiration from the "
Baghdad Battery," a simple device dating back to the first century BC, which some believe is the world's oldest battery. It consisted of a ceramic terracotta pot, a copper sheet and an iron rod, which were found along with traces of electrolyte. Although this interpretation of the artifacts is controversial, the simple way they were constructed influenced the research team's design.
Nitin Muralidharan et al,
From the Junkyard to the Power Grid: Ambient Processing of Scrap Metals into Nanostructured Electrodes for Ultrafast Rechargeable Batteries,
ACS Energy Letters (2016). DOI: 10.1021/acsenergylett.6b00295 $this->bbcode_second_pass_quote('', '[')b]Abstract:
Here we present the first full cell battery device that is developed entirely from scrap metals of brass and steel—two of the most commonly used and discarded metals. A room-temperature chemical process is developed to convert brass and steel into functional electrodes for rechargeable energy storage that transforms these multicomponent alloys into redox-active iron oxide and copper oxide materials. The resulting steel–brass battery exhibits cell voltages up to 1.8 V, energy density up to 20 Wh/kg, power density up to 20 kW/kg, and stable cycling over 5000 cycles in alkaline electrolytes. Further, we show the versatility of this technique to enable processing of steel and brass materials of different shapes, sizes, and purity, such as screws and shavings, to produce functional battery components. The simplicity of this approach, building from chemicals commonly available in a household, enables a simple pathway to the local recovery, processing, and assembly of storage systems based on materials that would otherwise be discarded. “When our aim was to produce the materials used in batteries from household supplies in a manner so cheaply that large-scale manufacturing facilities don’t make any sense, we had to approach this differently than we normally would in the research lab,” Pint said.
Pint said.