by Graeme » Mon 13 Oct 2014, 16:44:25
Ultra-Fast Charging Batteries Last 20 Years
$this->bbcode_second_pass_quote('', 'S')cientists at Nanyang Technology University (NTU) in Singapore have developed ultra-fast charging batteries that can be recharged up to 70% in only two minutes.
The new generation batteries also have a long lifespan of over 20 years, more than 10 times compared to existing lithium-ion batteries.
This breakthrough has a wide-ranging impact on all industries, especially for electric vehicles, where consumers are put off by the long recharge times and its limited battery life.
With this new technology by NTU, drivers of electric vehicles could save tens of thousands on battery replacement costs and can recharge their cars in just a matter of minutes.
Commonly used in mobile phones, tablets, and in electric vehicles, rechargeable lithium-ion batteries usually last about 500 recharge cycles. This is equivalent to two to three years of typical use, with each cycle taking about two hours for the battery to be fully charged.
In the new NTU-developed battery, the traditional graphite used for the anode (negative pole) in lithium-ion batteries is replaced with a new gel material made from titanium dioxide.
Titanium dioxide is an abundant, cheap and safe material found in soil. It is commonly used as a food additive or in sunscreen lotions to absorb harmful ultraviolet rays.
pddnetHow Battery Costs May Drop Below $100/kWh$this->bbcode_second_pass_quote('', 'T')he flow of analysis about battery storage from big-end investment banks continues apace. Last week it was HSBC and Citigroup with ground-breaking reports – which we wrote about here and here. UBS also jumped in on the act too.
Why is this so? Well, according to UBS, interest from both investors and corporates has accelerated in recent months. That’s because the big end of town is suddenly alive to the opportunities of a technology that will likely be even more disruptive than solar. And the key is in the forecast on costs.
So here are some highlights gleaned from the UBS discussion with Navigant:
Navigant estimates the cost of materials going into a battery at the Tesla Gigafactory on a processed chemical basis (not the raw ore) is $69/kWh [this metric is per kW per hour of operation].
The cost of the battery is only ~10-20% higher than the bill of materials – suggesting a potential long-term competitive price for Lithium Ion batteries could approach ~$100 per kWh. Tesla currently pays Panasonic $180/kW for their batteries, although conventional systems still selling for $500-700/kWh. But Navigant says that the broader market place will reach the levels Tesla is paying in the next two to three years.
A typical ‘load shifting’ 4-hour battery (designed to address the afternoon/evening peak) costs anywhere from ~$720-2,800/kWh, depending entirely on the scale of the Lithium Ion battery employed and the size of order.
The average $500-700/kWh for a typical battery is probably closer to the $2,000-3,000/kW when including the balance of the system costs ( around $400-500/kW), with a trend towards around $1,500/kW within the next 3-years. Navigant estimates the global market for batteries will grow from 400 MWh in 2013 (ie – 100 MW assuming 4-hour systems), to 20GWh (or around 5GW/yr) by 2020, globally.