by Graeme » Mon 02 Jun 2014, 18:35:39
I am a fan of FCV. I think that the Japanese government's support of this tech is very significant. You'll be hearing a lot more about all aspects of this tech. For instance:
Inexpensive catalyst to produce oxygen and hydrogen from water
$this->bbcode_second_pass_quote('', '')Fuel cells coupled with solar hydrogen generators and/or water electrolyzers can provide clean power for mobile and stationary uses, while redox flow batteries are ideal for large-scale solar and wind electricity storage,” says Yan, Distinguished Professor of Engineering at UD.
Creating this suite of devices is a tall order, and Yan knows that success is achieved one small breakthrough at a time. He and his research group recently made one such breakthrough when they synthesized a nickel-based catalyst that can split water into oxygen and hydrogen gas. Nickel, which is cheap and abundant, is an attractive replacement for currently used precious metals.
“Cheap and efficient oxidative water splitting is an important piece of the big picture of electrochemical energy conversion because this reaction enables the use of water as an energy source,” Yan says. “But without a catalyst, water splitting is both slow and inefficient. The most successful candidates developed for water oxidation so far have been oxides of ruthenium or iridium, which are both scarce and expensive.”
The work is reported in a paper, “Efficient Water Oxidation Using Nanostructured α‑Nickel-Hydroxide as an Electrocatalyst,” published in the Journal of the American Chemical Society (JACS) online on April 25. It was also selected for coverage in JACS Spotlights, a feature aimed at making JACS research more accessible to the broader community.
scienceblogAnd this:
Transforming hydrogen into liquid fuel using atmospheric CO2$this->bbcode_second_pass_quote('', 'H')ydrogen is often touted as the fuel of the future. But because this gas is highly explosive, it must be stored and transported under pressure in specialized and expensive containers. Hydrogen therefore has issues in terms of safety, logistics, and profitability that could significantly limit its wider use. However, a solution might lie in research by EPFL scientists, who have developed a simple system based on two chemical reactions. The first reaction transforms hydrogen into formic acid, a liquid that is easy to store and less flammable than gasoline, while the second reaction does the reverse and restores the hydrogen. Another possible application of their technology would be to use atmospheric CO2 to synthesize a number of useful chemical products.
Gabor Laurenczy's team has already developed a process for transforming formic acid into hydrogen gas. The method was the subject of several articles, one of which appeared in Science, and it is currently under industrial development. But a complete and coherent system would also require the inverse process: transforming hydrogen into formic acid. This has now been achieved, completing the cycle, thanks to the financial support of EOS Holding. The scientists in Laurenczy's team have described the process in a Nature Communications article.